s

Как подобрать пассивные радиоэлектронные компоненты

Если проанализировать работу в течение 3 — 5 лет любых аудио- и видеоусилителей, собранных на дискретных компонентах или с применением таковых, окажется, что шумовые помехообразующие свойства данных усилителей (без исключения, самодельного и промышленного производства), в разной степени неудовлетворительны для требовательного слуха меломана или просто внимательного слушателя, привыкшего к комфорту.

Одним из основных требований, предъявляемым к усилителям, является минимальный шум на выходе. В паспортных данных промышленно изготовленного усилителя, как правило, поставленного на конвейерную сборку, присутствует такой параметр, как отношение сигнал/шум. Чем ниже этот показатель — тем качественнее усилитель. Наверное, радиолюбители замечали, что сразу после приобретения нового усилителя среднего класса А или В его шумовые характеристики практически удовлетворительны, то есть в динамических головках трудно зафиксировать на слух шум самого усилителя. В процессе эксплуатации этот параметр постепенно ухудшается и вот уже на полной громкости усилителя слышен то ли «шум камыша», то ли иной постоянный шорох.

Как правило, бывший в ремонте усилитель имеет худшие качественные параметры, относительно нового. Объяснений тому может быть несколько — от установки в виде замены тех элементов, что есть в наличие, а не тех, которые необходимы по заданным параметрам (это касается всех радиоэлементов), и целым комплексом других причин. После повторной пайки усилители (как показывает практика) начинают больше шуметь даже с установленными высококачественными элементами. Основное усиление в усилителях прямого преобразования осуществляется на низких частотах. Поэтому особо важно при сборке усилителя применять те компоненты, которые впоследствии дадут меньше шумовых эффектов.

Источники шумов

По источнику возникновения шумы усилителей можно разделить на внешние и внутренние. С помехами и наводками, вызванными внешними причинами, можно успешно бороться известными способами — с помощью оптимального расположения элементов, экранирования корпуса устройства, фильтрами и фильтрующими оксидными конденсаторами по питанию. От внутренних шумов, возникающих в процессе усиления сигнала, избавиться не просто. Внутренние шумы усилителя зависят от схемотехники усилителя (совмести транзисторов и целых каскадов) и возникают при прохождении тока через пассивные (резисторы, катушки индуктивности и конденсаторы) и активные (транзисторы) элементы схемы.

При разработке или повторении высококачественного усилителя звуковой частоты, кроме оптимального выбора вида схемы, важно правильно подобрать элементную базу и оптимизировать режим работы каскадов усилителя.

В каждом усилителе источником внутренних шумов являются тепловые и токовые шумы постоянных и переменных резисторов, фликкер-шумы конденсаторов, диодов и стабилитронов, флуктуационные шумы активных элементов, вибрационные и контактные шумы.

Контактные шумы возникают при некачественной пайке, произведенной с нарушением температурного режима, в местах соединения разъемов и отслоений контактных площадок печатного монтажа. Количество всевозможных разъемов в усилительной аппаратуре должно быть сведено к минимуму. Вибрационные шумы — это разновидность контактных шумов. Они могут проявляться при эксплуатации усилителя на подвижных объектах, с вибрацией почвы (основания), в автомобиле и при неоправданно близком расположении мощных динамических головок к конструкции усилителя. Такие шумы возникают из-за передачи механических колебаний на обкладки конденсаторов, на которые воздействует приложенное напряжение. Особенно подвержены данному недостатку керамические конденсаторы (Kl О, К15 и другие) с емкостью более 0,01 мкФ, установленные во входных цепях усилителя и выполняющие роль разделительных. Спектр помехи находится в диапазоне низких частот. Для борьбы с этим явлением желательно применять амортизацию всей конструкции. В оксидных конденсаторах такие помехи не возникают.

Например, звуковой эффект эхо-сигнала — когда в динамических головках (учитывая стереоэффект) отчетливо слышно повторение сигнала. Для некоторых меломанов такой эффект даже приятен и необычен, но по сути, это является недостатком усилителя, хотя бы потому что его невозможно выключить (устранить).

При прямом прохождении тока собственные шумы диодов минимальны. Небольшой уровень шумов все же имеет место — при действии обратного напряжения образуется ток утечки, и чем он меньше — тем меньше шумовые свойства прибора. Стабилитроны и стабисторы дают больший шумовой эффект (с помощью таких полупроводников даже строят устройства со специальными эффектами — имитаторами шума прибоя, генераторы «белого» и «розового» шума). Чем большее сопротивление имеет ограничительный резистор в цепи стабилитрона (работа на малых токах), тем больше вероятность проявления внутренних шумов стабилитрона.

Рассмотрим шумы, возникающие от пассивных элементов: резисторов и конденсаторов.

Шумы резисторов
Собственные шумы резисторов складываются из тепловых и токовых шумов. Тепловые шумы вызваны движением электронов в токопроводящем слое, из которого частично состоит резистор. Такие шумы увеличиваются с увеличением температуры нагрева резистора, и даже температуры окружающей среды.

Если на резистор не действует напряжение, то ЭДС его шумов (мкВ) определяется соотношением:
E = 0,0125 x ( f, — /;) R,
где ( f, — /) — полоса частот, кГц; Я — сопротивление, кОм.

При протекании через резистор тока возникают токовые шумы. Шумовое напряжение появляется из-за эффекта флуктуации контактных сопротивлений между проводниками, оно линейно зависит от приложенного напряжения.

Шумовые свойства резисторов характеризуются отношением действующего значения переменной составляющей напряжения шумов Ет (измеряемой в мкВ) к приложенному напряжению Г(измеряемого в В): Ет) U;

Частотный спектр тепловых и токовых шумов имеет непрерывный характер. Между тепловым и токовым шумами есть различия. Спектр теплового шума равномерно распределен по всей полосе частот, а у токового шума спадает с примерно 10 МГц. Общая величина шума пропорциональна квадратному корню сопротивления, поэтому у резисторов с низким сопротивлением шумовые качества менее значимы. Кроме того, определяющее значение имеет материал, из которого изготовлены резисторы.

Есть несколько способов борьбы с шумами резисторов. Применение тех типов резисторов, в которых за счет технологии изготовления шумовые свойства менее значимы. У непроволочных резисторов токовые шумы значительно больше тепловых. Общий уровень шума для разных типов резисторов находится в диапазоне 0,1 — 100 мк В/В.

Подстроечные и переменные резисторы шумят больше постоянных, поэтому их лучше применять с небольшими номиналами или вообще исключить. Тепловые шумы можно значительно сократить, если применять резистор большей мощности рассеяния, чем это технологически требуется.

Тот же эффект достигается принудительным охлаждением резисторов, например, с помощью установленного непосредственно рядом с элементами вентилятора, или помещением всей монтажной платы в холодильник. Параллельное или последовательное включение резисторов для этой цели дает ощутимо меньший эффект, так

Из табл. 1 видно, что наиболее эффективно использовать в высококачественном малошумящем усилителе ~вуковой частоты резисторы типов С2-26, С2-29В, С2-33 ~ резисторы в чип-исполнении (бескорпусные) C l-4. '<ак наиболее шумовые из популярных резисторов, кроле переменных и подстроечных, показали себя популярные и распространенные типы МЛТ, ОМЛТ.

Резисторы, применяемые в колебательных контурах, усилителях высокой частоты должны обладать только акивным сопротивлением, то есть не изменять свое сопротивление в рабочем диапазоне частот. Пограничная час.ота, на которой будет эффективно работать резистор, ~зависит от его сопротивления и собственной емкости т определяется соотношением F = 1/4 Я С.

Собственные емкости резисторов С2-6, С2-13, С2-14, "2-23, С2-33, ОМЛТ находятся в интервале 0,1 — 1,1 пФ. Постоянные резисторы имеют допуск отклонения сопро-тивления от номинальной величины. Здесь важно понимать, что чем больше допустимый разброс в отклонении от номинального сопротивления резистора — тем менее стабильной может оказаться его работа. В усилителях желательно применить постоянные резисторы с допуском отклонения 0,001...2% марки С2-23. Допуск в отечественных резисторах обозначается третьим или четвертым элементом в маркировке.

В табл. 2 приводятся обозначения допусков постоянных резисторах отечественного производства.

Величина допуска может быть нанесена и под номиналом, во второй строке. Что касается резисторов, на которых маркировка читается в виде цветных полос, то для нашего случая это еще проще — постоянные резисторы с малой величиной допуска (0,1...10%) маркируются пятью цветными кольцами на корпусе прибора. При этом первые три — численная величина сопротивления в Омах, четвертое кольцо — множитель, а пятое — допуск. Для нашего варианта пятая полоса должна иметь цвет: золотистый (+5%), коричневый (+1%), красный (+2%), зеленый (+0,5%), голубой (+0,25%), фиолетовый (+0,1%). Резисторы с более широким допуском маркируются четырьмя полосами.

Маркировочные знаки на резисторах сдвинуты к одному из выводов и читаются слева направо. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, ширина полосы первого знака делается несколько больше других. Современные резисторы маркируются по ОСТ 11.074.009 — 98.

Маркировка резисторов

Первый элемент — буква или сочетание букв, обозначающих подкласс резисторов (в этом материале рассмотрим только резисторы, имеющие значения для усилительной и высококачественной техники). Р — резисторы постоянные, РП — переменные.

Второй элемент — группа по материалу изготовления.
1 — непроволочные, 2 — проволочные или металлофольго вые.
Третий элемент — цифра, обозначающая регистрационный номер разработки. Между вторым и третьим элементом ставится дефис, например P 1-4. Кроме того, четвертым обозначением (не всегда) ставится климатическое исполнение, что важно для высококачественных усилителей. В — всеклиматическое, Т — тропическое исполнение. Совершенно естественно, что в относительно жарком климате надежней резистор исполнения «Т».

По классификации до 1980г. обозначение отечественных постоянных резисторов начиналось с буквы «C»— сопротивления (СП — переменные резисторы). Вторая цифра указывает на особенности токонесущей части:

1-непроволочные тонкослойные углеродистые и бороуглеродистые;

2 — непроволочные нкослойныеметаллодиэлектрически или металлоокисные;

3 — непроволочные композ>щионные пленочные;

4 — непроволочные композиционные объемные;

5 — проволочные;

6 — непроволочные тонкослойные металлизированные.


Единая структура условных обозначений всех резисторов, выпускаемых за рубежом, отсутствует. Поэтому каждая уважающая себя фирма обозначает резисторы по своему стандарту. Чтобы перечислить все возможные обозначения (особо важен материал резистора и технология изготовления), потребовалось бы опубликовать несколько книг.

В последнее время пользуются популярностью металлопленочные резисторы MF.

Материал основы — особо чистая керамика, резистивный слой — осажденный NiCr сплав. Выводы таких резисторов из луженной меди. Температурный диапазон — 55...+155 'С. Температурный коэффициент сопротивления +15...+50 рргп/'С. Выпускаются с мощностью рассеяния 0,125 — 3 Вт.

Особо малогабаритные варианты данного типа постоянных резисторов маркируются MF-S. Точность сопротивления (допуск отклонения) в пределах 0,1 — 5%, что позволяет использовать их в высококачественных усилителях. Точность сопротивления и другие электрические параметры маркируются цветовыми полосами так, как рассмотрено выше.

Еще один вариант подходящих постоянных резисторов для высококачественных усилителей звуковой частоты — металлооксидные резисторы МО. Основа та же. Резистивный слой — металлооксидная пленка дает название самому типу данных резисторов. Кроме отличий по электрическим характеристикам, данный тип резисторов имеет огнеупорное покрытие, что позволяет строить на их основе устройства, работающие с высоким уровнем температуры воздуха, например, пожарной сигнализации.

Малогабаритные варианты маркируются МО-S. Мощность рассеяния до 5 Вт при температуре +70 'С. Температурный коэффициент сопротивление чуть хуже: +200 ррпт/'С. Точность сопротивления (допуск) также уступают постоянным резисторам серии MF — только +5%. Температурный диапазон — 55...+200 'С.

Постоянные резисторы серий KNP (проволочные резисторы), а также SQP и PRW (мощные проволочные резисторы с высокой перегрузочной способностью, закатанные в литой цементный корпус) для работы в высококачественном усилителе нежелательны из-закомплекса причин, одной из которых является чрезмерно нестабильный (для усилителей класса А) их температурный коэффициент сопротивления +300 ррт/'С.

Шумы конденсаторов

Для переменного тока конденсатор представляет собой сопротивление, величина которого уменьшается с ростом частоты. В конденсаторах источником фликкер-шумов является ток утечки. Наибольший ток утечки у оксидных конденсаторов большой емкости.

Замечено, что утечка увеличивается с увеличением емкости и снижается с увеличением допустимого рабочего напряжения U Оксидные конденсаторы, установленные на входе и выходе усилителя в качестве разделительных (не пропускают постоянную составляющую напряжения и уменьшают влияние нагрузки или выходных каскадов предварительного усилителя на работу основного усилителя) существенно увеличивают внутренние шумы усилителя. Поэтому желательно вместо них применять пленочные конденсаторы (например, К10-17, К10-28, К10-23, КТ4-23, К73-3, К73-9, К73-17, К76-3, К10У-5, КД-1, К76-П2, КМ-5, КМ-6, из импортных-KWC), хотя это, во-первых, приведет к существенному увеличению размеров конструкции, а во-вторых, выходные конденсаторы таким образом заменить не удастся из-за относительно больших емкостей.

Оксидные конденсаторы вообще являются значительным источником фликкер-шумов, которые образуются в усилителе с течением времени. По этой же причине желательно избегать их применения в цепях прохождения сигнала.

В табл. 5 сведены данные о некоторых популярных оксидных конденсаторах, изучив которые можно определить те или иные прерогативы в использовании данных конденсаторов. Наименьшие токи утечки среди оксидных конденсаторов имеют К53-1А, К53-18, К53-16, К52-18, К53-4.

При выборе компонентов для высококачественного усилителя необходимо принимать во внимание, кроме электрических параметров, срок изготовления и фирму-производителя. Как правило, производитель гарантирует паспортные параметры в течение ограниченного срока 3 — 8 лет. При длительном периоде хранения оксидных конденсаторов до введения их в рабочий режим, их токи утечки заметно возрастают.

Учитывая это, при использовании долгое время хранившихся на консервации конденсаторов необходимо постепенно повышать воздействующее на них напряжение до указанного в паспортных данных номинального значения. Так как токи утечки конденсатора возрастают при увеличении температуры, следует хранить конденсаторы в недоступном для прямых солнечных лучей месте, при температуре окружающей среды в диапазоне — 40...+40 'С. Для того чтобы подбирать конденсаторы для той или иной радиоэлектронной аппаратуры необходимо знать их обозначения и сведения, определяющие их электрические параметры такие, как емкость, рабочее напряжение, материал изготовления, группу ТКЕ (температурного коэффициента емкости).

Обозначения отечественных конденсаторов в соответствии с ОСТ 11.074.008.98 (действует с 1998 г.) далее.

Обозначения конденсаторов
Первый элемент обозначения — буква или сочетание букв, определяющих тип конденсатора (К — постоянной емкости, КТ — подстроечный, КП — переменный, КС-конденсаторные сборки — не путайте с начальным обозначением микросхем, например серии КС193ИЕ2).

Второй элемент — используемый вид материала (диэлектрика). Далее некоторые сведения, относящиеся к конденсаторам, применяемым в усилителях различного назначения:

керамические;
кварцевые;
стеклянные;
стеклокерамик еские;
стеклоэмалевые;
тонкопленочные с неорганическим диэлектри-
ком;
слюдяные;
бумажные и фольговые;
бумажные металлизированные;
оксидные (электролитические) алюминиевые;
оксидные танталовые и ниобиевые;
оксидные танталовые объемопористые;
оксидно-полупроводниковые;
с двойным электрическим слоем, они же ионис-
торы;
воздушные;
вакуумные;
полистирольные с металлизированными об-
кладками;
второпластовые;
полиэтилен нтерефталатные.

Hosted by uCoz